Affiliation:
1. Medical University of South Carolina
Abstract
Abstract
Background: Electronic health records (EHR) commonly contain patient addresses that provide valuable data for geocoding and spatial analysis, enabling more comprehensive descriptions of individual patients for clinical purposes. Despite the widespread use of EHR in clinical decision support and interventions, no systematic review has examined the extent to which spatial analysis is used to characterize patient phenotypes.
Objective: This study reviews advanced spatial analyses that employed individual-level health data from EHR within the US to characterize patient phenotypes.
Methods: We systematically evaluated English-language peer-reviewed articles from PubMed/MEDLINE, Scopus, Web of Science, and Google Scholar databases from inception to August 20, 2023, without imposing constraints on time, study design, or specific health domains.
Results: Only 49 articles met the eligibility criteria. These articles utilized diverse spatial methods, with a predominant focus on clustering techniques, while spatiotemporal analysis (frequentist and Bayesian) and modeling were relatively underexplored. A noteworthy surge (n = 42, 85.7%) in publications was observed post-2017. The publications investigated a variety of adult and pediatric clinical areas, including infectious disease, endocrinology, and cardiology, using phenotypes defined over a range of data domains, such as demographics, diagnoses, and visits. The primary health outcomes investigated were asthma, hypertension, and diabetes. Notably, patient phenotypes involving genomics, imaging, and notes were rarely utilized.
Conclusions: This review underscores the growing interest in spatial analysis of EHR-derived data and highlights knowledge gaps in clinical health, phenotype domains, and spatial methodologies. Additionally, this review proposes guidelines for harnessing the potential of spatial analysis to enhance the context of individual patients for future clinical decision support.
Publisher
Research Square Platform LLC
Reference89 articles.
1. Secure Messaging in Electronic Health Records and Its Impact on Diabetes Clinical Outcomes: A Systematic Review;Kuo A;Telemed J E Health,2016
2. Big data in healthcare: management, analysis and future prospects;Dash S;Journal of big data,2019
3. Xie S, Greenblatt R, Levy MZ, Himes BE. Enhancing Electronic Health Record Data with Geospatial Information. AMIA Jt Summits Transl Sci Proc 2017;2017:123 – 32 [published Online First: 20170726].
4. Evaluation of associations between asthma exacerbations and distance to roadways using geocoded electronic health records data;He J;BMC Public Health,2020
5. Rural veteran access to healthcare services: investigating the role of information and communication technologies in overcoming spatial barriers;Schooley BL;Perspect Health Inf Manag,2010
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献