Triple-negative breast cancer cells invade adipocyte/preadipocyte-encapsulating geometrically inverted mammary organoids

Author:

Mertz David R1,Parigoris Eric1,Sentosa Jason1,Lee Ji-Hoon1,Lee Soojung1,Kleer Celina G2,Luker Gary3,Takayama Shuichi1

Affiliation:

1. Georgia Institute of Technology and Emory School of Medicine Wallace H. Coulter Department of Biomedical Engineering , , Atlanta, GA , USA

2. University of Michigan Department of Pathology, , Ann Arbor, MI , USA

3. Center for Molecular Imaging, Department of Radiology, University of Michigan , Ann Arbor, MI , USA

Abstract

AbstractThis paper describes the manufacture of geometrically inverted mammary organoids encapsulating primary mammary preadipocytes and adipocytes. Material manipulation in an array of 192 hanging drops induces cells to self-assemble into inside-out organoids where an adipose tissue core is enveloped by a cell-produced basement membrane, indicated by laminin V staining and then a continuous layer of mammary epithelial cells. This inverted tissue structure enables investigation of multiple mammary cancer subtypes, with a significantly higher extent of invasion by triple-negative MDA-MB-231 breast cancer cells compared to MCF7 cells. By seeding cancer cells into co-culture around pre-formed organoids with encapsulated preadipocytes/adipocytes, invasion through the epithelium, then into the adipose core is observable through acquisition of confocal image stacks of whole mount specimens. Furthermore, in regions of the connective tissue core where invasion occurs, there is an accumulation of collagen in the microenvironment. Suggesting that this collagen may be conducive to increased invasiveness, the anti-fibrotic drug pirfenidone shows efficacy in this model by slowing invasion. Comparison of adipose tissue derived from three different donors shows method consistency as well as the potential to evaluate donor cell-based biological variability.Insight box Geometrically inverted mammary organoids encapsulating primary preadipocytes/adipocytes (P/As) are bioengineered using a minimal amount of Matrigel scaffolding. Use of this eversion-free method is key to production of adipose mammary organoids (AMOs) where not only the epithelial polarity but also the entire self-organizing arrangement, including adipose position, is inside-out. While an epithelial-only structure can analyze cancer cell invasion, P/As are required for invasion-associated collagen deposition and efficacy of pirfenidone to counteract collagen deposition and associated invasion. The methods described strike a balance between repeatability and preservation of biological variability: AMOs form consistently across multiple adipose cell donors while revealing cancer cell invasion differences.

Funder

Price Gilbert Jr Chair Fund

NIH

National Science Foundation Graduate Research Fellowship Program

Publisher

Oxford University Press (OUP)

Subject

Biochemistry,Biophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3