Affiliation:
1. Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysuru, India
2. Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
3. Department of Bioengineering, University of Illinois, Urbana-Champaign, IL, USA
Abstract
Abstract
Systems-based metabolic engineering enables cells to enhance product formation by predicting gene knockout and overexpression targets using modeling tools. FOCuS, a novel metaheuristic tool, was used to predict flux improvement targets in terpenoid pathway using the genome-scale model of Saccharomyces cerevisiae, iMM904. Some of the key knockout target predicted includes LYS1, GAP1, AAT1, AAT2, TH17, KGD-m, MET14, PDC1 and ACO1. It was also observed that the knockout reactions belonged either to fatty acid biosynthesis, amino acid synthesis pathways or nucleotide biosynthesis pathways. Similarly, overexpression targets such as PFK1, FBA1, ZWF1, TDH1, PYC1, ALD6, TPI1, PDX1 and ENO1 were established using three different existing gene amplification algorithms. Most of the overexpression targets belonged to glycolytic and pentose phosphate pathways. Each of these targets had plausible role for improving flux toward sterol pathway and were seemingly not artifacts. Moreover, an in vitro study as validation was carried with overexpression of ALD6 and TPI1. It was found that there was an increase in squalene synthesis by 2.23- and 4.24- folds, respectively, when compared with control. In general, the rationale for predicting these in silico targets was attributed to either increasing the acetyl-CoA precursor pool or regeneration of NADPH, which increase the sterol pathway flux.
Funder
Science and Engineering Research Board
Publisher
Oxford University Press (OUP)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献