Electrical stimulation of cell growth and neurogenesis using conductive and nonconductive microfibrous scaffolds

Author:

Grossemy Simon1,Chan Peggy P Y1,Doran Pauline M1ORCID

Affiliation:

1. Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, Hawthorn, Melbourne, Australia

Abstract

Abstract The effect of exogenous electrical stimulation on cell viability, attachment, growth, and neurogenesis was examined using PC12 cells in microfibrous viscose-rayon scaffolds immersed in culture medium. The scaffolds were applied either in their nonconductive state or after coating the fibres with 200 nm of gold to give a scaffold sheet resistivity of (13 ± 1.3) Ω square−1. The cells were treated for 12 days using direct current electrical stimulation of 2 h per day. No cytotoxic effects were observed when up to 500 mV (8.3 mV mm−1) was applied to the scaffolds without gold, or when up to 100 mV (1.7 mV mm−1) was applied to the scaffolds with gold. Compared with unstimulated cells, whereas electrical stimulation significantly enhanced cell growth and attachment in the nonconductive scaffolds without gold, similar effects were not found for the conductive scaffolds with gold. Neural differentiation in the presence of nerve growth factor was improved by electrical stimulation in both scaffolds; however, neurite development and the expression of key differentiation markers were greater in the nonconductive scaffolds without gold than in the scaffolds with gold. Application of the same current to scaffolds with and without gold led to much higher levels of neurogenesis in the scaffolds without gold. This work demonstrates that substantial benefits in terms of cell growth and neural differentiation can be obtained using electric fields exerted across nonconductive microfibrous scaffolds, and that this approach to electrical stimulation can be more effective than when the stimulus is applied to cells on conductive scaffolds.

Funder

Australian Research Council

Publisher

Oxford University Press (OUP)

Subject

Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3