Electrical pulse stimulation parameters modulate N2a neuronal differentiation

Author:

Martín DanielORCID,Ruano Diego,Yúfera Alberto,Daza Paula

Abstract

AbstractElectrical pulse stimulation has been used to enhance the differentiation or proliferation of neuronal progenitor cells in tissue engineering and cancer treatment. Therefore, a comprehensive investigation of the effects caused by its parameters is crucial for improvements in those fields. We propose a study of pulse parameters, to allow the control of N2a cell line fate and behavior. We have focused on designing an experimental setup that allows for the knowledge and control over the environment and the stimulation signals applied. To map the effects of the stimulation on N2a cells, their morphology and the cellular and molecular reactions induced by the pulse stimulation have been analyzed. Immunofluorescence, rt-PCR and western blot analysis have been carried out for this purpose, as well as cell counting. Our results show that low-amplitude electrical pulse stimulation promotes proliferation of N2a cells, whilst amplitudes in the range 250 mV/mm–500 mV/mm induce differentiation. Amplitudes higher than 750 mV/mm produce cell damage at low frequencies. For high frequencies, large amplitudes are needed to cause cell death. An inverse relation has been found between cell density and pulse-induced neuronal differentiation. The best condition for neuronal differentiation was found to be 500 mV/mm at 100 Hz. These findings have been confirmed by up-regulation of the Neurod1 gene. Our preliminary study of the molecular effects of electrical pulse stimulation on N2a offers premonitory clues of the PI3K/Akt/GSK-3β pathway implications on the neuronal differentiation process through ES. In general, we have successfully mapped the sensitivity of N2a cells to electrical pulse stimulation parameters.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3