Genetic variability in the feeding behavior of crossbred growing cattle and associations with performance and feed efficiency

Author:

Kelly David N12ORCID,Sleator Roy D2,Murphy Craig P2ORCID,Conroy Stephen B3,Berry Donagh P1

Affiliation:

1. Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland

2. Department of Biological Sciences, Munster Technological University, Bishopstown Campus, Co. Cork, Ireland

3. Irish Cattle Breeding Federation, Highfield House, Shinagh, Bandon, Co. Cork, Ireland

Abstract

Abstract The objectives of the present study were to estimate genetic parameters for several feeding behavior traits in growing cattle, as well as the genetic associations among and between feeding behavior and both performance and feed efficiency traits. An additional objective was to investigate the use of feeding behavior traits as predictors of genetic merit for feed intake. Feed intake and live-weight data on 6,088 growing cattle were used of which 4,672 had ultrasound data and 1,548 had feeding behavior data. Feeding behavior traits were defined based on individual feed events or meal events (where individual feed events were grouped into meals). Univariate and bivariate animal linear mixed models were used to estimate (co)variance components. Heritability estimates (± SE) for the feeding behavior traits ranged from 0.19 ± 0.08 for meals per day to 0.61 ± 0.10 for feeding time per day. The coefficient of genetic variation per trait varied from 5% for meals per day to 22% for the duration of each feed event. Genetically heavier cattle, those with a higher daily energy intake (MEI), or those that grew faster had a faster feeding rate, as well as a greater energy intake per feed event and per meal. Better daily feed efficiency (i.e., lower residual energy intake) was genetically associated with both a shorter feeding time per day and shorter meal time per day. In a validation population of 321 steers and heifers, the ability of estimated breeding values (EBV) for MEI to predict (adjusted) phenotypic MEI was demonstrated; EBVs for MEI were estimated using multi-trait models with different sets of predictor traits such as liveweight and/or feeding behaviors. The correlation (± SE) between phenotypic MEI and EBV for MEI marginally improved (P < 0.001) from 0.64 ± 0.03 to 0.68 ± 0.03 when feeding behavior phenotypes from the validation population were included in a genetic evaluation that already included phenotypic mid-test metabolic live-weight from the validation population. This is one of the largest studies demonstrating that significant exploitable genetic variation exists in the feeding behavior of young crossbred growing cattle; such feeding behavior traits are also genetically correlated with several performance and feed efficiency metrics. Nonetheless, there was only a marginal benefit to the inclusion of time-related feeding behavior phenotypes in a genetic evaluation for MEI to improve the precision of the EBVs for this trait.

Funder

U.S. Department of Agriculture

Food and the Marine Ireland Research Stimulus Fund

Publisher

Oxford University Press (OUP)

Subject

Genetics,Animal Science and Zoology,General Medicine,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3