Effects of bone morphogenetic protein 4, gremlin, and connective tissue growth factor on estradiol and progesterone production by bovine granulosa cells

Author:

Spicer Leon J1,Schutz Luis F1,Aad Pauline Y1

Affiliation:

1. Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA

Abstract

Abstract Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-β family of proteins that have been implicated in the paracrine regulation of granulosa cell (GC) function, but whether responses to BMPs change with follicular size or interact with connective tissue growth factor (CTGF) or BMP antagonists (e.g., gremlin [GREM]) to directly affect GC function of cattle is unknown. Therefore, to determine the effects of BMP4 on proliferation and steroidogenesis of GCs and its interaction with GREM or CTGF, experiments were conducted using bovine GC cultures. In vitro, BMP4 (30 ng/mL) inhibited (P < 0.05) follicle-stimulating hormone (FSH) plus insulin-like growth factor 1 (IGF1)-induced progesterone and estradiol production by large- and small-follicle GCs, but the inhibitory effect of BMP4 on estradiol production was much more pronounced in large-follicle GCs. In small-follicle GCs, BMP4 had no effect (P > 0.10) on IGF1-induced proliferation, but GREM inhibited (P < 0.05) cell proliferation and estradiol and progesterone production in IGF1 plus FSH-treated GCs. In large-follicle GCs, BMP4 (10 to 30 ng/mL) increased (P < 0.05) GC numbers and GREM (100 ng/mL) blocked this effect. In large-follicle GCs, CTGF inhibited (P < 0.05) FSH plus IGF1-induced progesterone and estradiol production, and CTGF blocked the stimulatory effect of BMP4 on GC proliferation. These results indicate that BMP4, GREM, and CTGF inhibit GC aromatase activity and progesterone production. Also, the stimulatory effect of BMP4 on GC proliferation and the inhibitory effects of BMP4 on GC steroidogenesis are more pronounced in large vs. small follicles.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Animal Science and Zoology,General Medicine,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3