The Use of Natural Language Processing to Assess Social Support in Patients With Advanced Cancer

Author:

Bhatt Sunil1,Johnson P Connor12ORCID,Markovitz Netana H1,Gray Tamryn23ORCID,Nipp Ryan D12,Ufere Nneka24,Rice Julia5,Reynolds Matthew J5,Lavoie Mitchell W5,Clay Madison A5,Lindvall Charlotta23,El-Jawahri Areej12ORCID

Affiliation:

1. Department of Medicine, Division of Hematology & Oncology, Massachusetts General Hospital, Boston , MA , USA

2. Harvard Medical School , Boston, MA , USA

3. Department of Psychosocial Oncology and Palliative Care, Dana-Farber Cancer Institute , Boston, MA , USA

4. Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Brigham and Women’s Hospital , Boston, MA , USA

5. Department of Psychiatry, Massachusetts General Hospital , Boston, MA , USA

Abstract

Abstract Background Data examining associations among social support, survival, and healthcare utilization are lacking in patients with advanced cancer. Methods We conducted a cross-sectional secondary analysis using data from a prospective longitudinal cohort study of 966 hospitalized patients with advanced cancer at Massachusetts General Hospital from 2014 through 2017. We used NLP to identify extent of patients’ social support (limited versus adequate as defined by NLP-aided review of the Electronic Health Record (EHR)). Two independent coders achieved a Kappa of 0.90 (95% CI: 0.84-1.00) using NLP. Using multivariable regression models, we examined associations of social support with: 1) OS; 2) death or readmission within 90 days of hospital discharge; 3) time to readmission within 90 days; and 4) hospital length of stay (LOS). Results Patients’ median age was 65 (range: 21-92) years, and a plurality had gastrointestinal (GI) cancer (34.3%) followed by lung cancer (19.5%). 6.2% (60/966) of patients had limited social support. In multivariable analyses, limited social support was not significantly associated with OS (HR = 1.13, P = 0.390), death or readmission (OR = 1.18, P = 0.578), time to readmission (HR = 0.92, P = 0.698), or LOS (β = −0.22, P = 0.726). We identified a potential interaction suggesting cancer type (GI cancer versus other) may be an effect modifier of the relationship between social support and OS (interaction term P = 0.053). In separate unadjusted analyses, limited social support was associated with lower OS (HR = 2.10, P = 0.008) in patients with GI cancer but not other cancer types (HR = 1.00, P = 0.991). Conclusion We used NLP to assess the extent of social support in patients with advanced cancer. We did not identify significant associations of social support with OS or healthcare utilization but found cancer type may be an effect modifier of the relationship between social support and OS. These findings underscore the potential utility of NLP for evaluating social support in patients with advanced cancer.

Funder

Leukemia and Lymphoma Society

Publisher

Oxford University Press (OUP)

Subject

Cancer Research,Oncology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3