Response of photosynthesis, growth and water relations of a savannah-adapted tree and grass grown across high to low CO2

Author:

Quirk Joe1,Bellasio Chandra1234,Johnson David A1,Beerling David J1

Affiliation:

1. Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK

2. University of the Balearic Islands, Palma, Illes Balears, Spain

3. Research School of Biology, Australian National University, Acton, ACT, Australia

4. Trees and Timber Institute, National Research Council of Italy, Sesto Fiorentino, Florence, Italy

Abstract

AbstractBackground and AimsBy the year 2100, atmospheric CO2 concentration ([CO2]a) could reach 800 ppm, having risen from ~200 ppm since the Neogene, beginning ~24 Myr ago. Changing [CO2]a affects plant carbon–water balance, with implications for growth, drought tolerance and vegetation shifts. The evolution of C4 photosynthesis improved plant hydraulic function under low [CO2]a and preluded the establishment of savannahs, characterized by rapid transitions between open C4-dominated grassland with scattered trees and closed forest. Understanding directional vegetation trends in response to environmental change will require modelling. But models are often parameterized with characteristics observed in plants under current climatic conditions, necessitating experimental quantification of the mechanistic underpinnings of plant acclimation to [CO2]a.MethodsWe measured growth, photosynthesis and plant–water relations, within wetting–drying cycles, of a C3 tree (Vachellia karroo, an acacia) and a C4 grass (Eragrostis curvula) grown at 200, 400 or 800 ppm [CO2]a. We investigated the mechanistic linkages between trait responses to [CO2]a under moderate soil drying, and photosynthetic characteristics.Key resultsFor V. karroo, higher [CO2]a increased assimilation, foliar carbon:nitrogen, biomass and leaf starch, but decreased stomatal conductance and root starch. For Eragrostis, higher [CO2]a decreased C:N, did not affect assimilation, biomass or starch, and markedly decreased stomatal conductance. Together, this meant that C4 advantages in efficient water-use over the tree were maintained with rising [CO2]a.ConclusionsAcacia and Eragrostis acclimated differently to [CO2]a, with implications for their respective responses to water limitation and environmental change. Our findings question the carbon-centric focus on factors limiting assimilation with changing [CO2]a, how they are predicted and their role in determining productivity. We emphasize the continuing importance of water-conserving strategies in the assimilation response of savannah plants to rising [CO2]a.

Funder

European Research Council

Publisher

Oxford University Press (OUP)

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3