C4 maize and sorghum are more sensitive to rapid dehydration than C3 wheat and sunflower

Author:

Bellasio Chandra123ORCID,Stuart‐Williams Hilary3ORCID,Farquhar Graham D.3ORCID,Flexas Jaume2ORCID

Affiliation:

1. Laboratory of Theoretical and Applied Crop Ecophysiology, School of Biology and Environmental Science University College Dublin Belfield Dublin 4 Ireland

2. Biology of Plants Under Mediterranean Conditions, Department of Biology University of the Balearic Islands Illes Balears Palma 07122 Spain

3. Research School of Biology Australian National University Acton ACT 2601 Australia

Abstract

Summary The high productive potential, heat resilience, and greater water use efficiency of C4 over C3 plants attract considerable interest in the face of global warming and increasing population, but C4 plants are often sensitive to dehydration, questioning the feasibility of their wider adoption. To resolve the primary effect of dehydration from slower from secondary leaf responses originating within leaves to combat stress, we conducted an innovative dehydration experiment. Four crops grown in hydroponics were forced to a rapid yet controlled decrease in leaf water potential by progressively raising roots of out of the solution while measuring leaf gas exchange. We show that, under rapid dehydration, assimilation decreased more steeply in C4 maize and sorghum than in C3 wheat and sunflower. This reduction was due to a rise of nonstomatal limitation at triple the rate in maize and sorghum than in wheat and sunflower. Rapid reductions in assimilation were previously measured in numerous C4 species across both laboratory and natural conditions. Hence, we deduce that high sensitivity to rapid dehydration might stem from the disturbance of an intrinsic aspect of C4 bicellular photosynthesis. We posit that an obstruction to metabolite transport between mesophyll and bundle sheath cells could be the cause.

Funder

H2020 Marie Skłodowska-Curie Actions

Science Foundation Ireland

Publisher

Wiley

Subject

Plant Science,Physiology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3