Graph deep learning enabled spatial domains identification for spatial transcriptomics

Author:

Liu Teng1,Fang Zhao-Yu2,Li Xin1,Zhang Li-Ning1,Cao Dong-Sheng3,Yin Ming-Zhu14

Affiliation:

1. Clinical Research Center (CRC), Clinical Pathology Center (CPC), Chongqing University Three Gorges Hospital, Chongqing University , Wanzhou, Chongqing, P.R. China

2. Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering at Central South University , Hunan, P.R. China

3. Xiangya School of Pharmaceutical Sciences, Central South University , Changsha, 410003, P.R. China

4. Translational Medicine Research Center (TMRC), School of Medicine, Chongqing University , Shapingba, Chongqing, P.R. China

Abstract

Abstract Advancing spatially resolved transcriptomics (ST) technologies help biologists comprehensively understand organ function and tissue microenvironment. Accurate spatial domain identification is the foundation for delineating genome heterogeneity and cellular interaction. Motivated by this perspective, a graph deep learning (GDL) based spatial clustering approach is constructed in this paper. First, the deep graph infomax module embedded with residual gated graph convolutional neural network is leveraged to address the gene expression profiles and spatial positions in ST. Then, the Bayesian Gaussian mixture model is applied to handle the latent embeddings to generate spatial domains. Designed experiments certify that the presented method is superior to other state-of-the-art GDL-enabled techniques on multiple ST datasets. The codes and dataset used in this manuscript are summarized at https://github.com/narutoten520/SCGDL.

Funder

National Key Research and Development Programs of China

National Natural Science Foundation of China

Hunan Provincial Science Fund for Distinguished Young Scholars

Science and Technology Innovation Program of Hunan Province

Key Research and Development Program of Hunan Province

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3