ProsmORF-pred: a machine learning-based method for the identification of small ORFs in prokaryotic genomes

Author:

Khanduja Akshay1,Kumar Manish1,Mohanty Debasisa1ORCID

Affiliation:

1. National Institute of Immunology , Aruna Asaf Ali Marg, New Delhi 110067 , India

Abstract

Abstract Small open reading frames (smORFs) encoding proteins less than 100 amino acids (aa) are known to be important regulators of key cellular processes. However, their computational identification remains a challenge. Based on a comprehensive analysis of known prokaryotic small ORFs, we have developed the ProsmORF-pred resource which uses a machine learning (ML)-based method for prediction of smORFs in the prokaryotic genome sequences. ProsmORF-pred consists of two ML models, one for initiation site recognition in nucleic acid sequences upstream of putative start codons and the other uses translated amino acid sequences to decipher functional protein like sequences. The nucleotide sequence-based initiation site recognition model has been trained using longer ORFs (>100 aa) in the same genome while the ML model for identification of protein like sequences has been trained using annotated smORFs from Escherichia coli. Comprehensive benchmarking of ProsmORF-pred reveals that its performance is comparable to other state-of-the-art approaches on the annotated smORF set derived from 32 prokaryotic genomes. Its performance is distinctly superior to other tools like PRODIGAL and RANSEPS for prediction of newly identified smORFs which have a length range of 10–30 aa, where prediction of smORFs has been a major challenge. Apart from identification of smORFs in genomic sequences, ProsmORF-pred can also aid in functional annotation of the predicted smORFs based on sequence similarity and genomic neighbourhood similarity searches in ProsmORFDB, a well-curated database of known smORFs. ProsmORF-pred along with its backend database ProsmORFDB is available as a user-friendly web server (http://www.nii.ac.in/prosmorfpred.html).

Funder

Department of Biotechnology, Government of India

National Institute of Immunology

Department of Biotechnology

National Supercomputing Mission, MeiTY, India

Senior Research Fellowship from CSIR, India

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3