PDK1 Regulates the Lengthening of G1 Phase to Balance RGC Proliferation and Differentiation during Cortical Neurogenesis

Author:

Han Xiaoning,Wei Yongjie,Ba Ru,Sun Lijuan,Zhao Chunjie

Abstract

Abstract During cortical development, the balance between progenitor self-renewal and neurogenesis is critical for determining the size/morphology of the cortex. A fundamental feature of the developing cortex is an increase in the length of G1 phase in RGCs over the course of neurogenesis, which is a key determinant of progenitor fate choice. How the G1 length is temporally regulated remains unclear. Here, Pdk1, a member of the AGC kinase family, was conditionally disrupted by crossing an Emx1-Cre mouse line with a Pdk1fl/fl line. The loss of Pdk1 led to a shorter cell cycle accompanied by increased RGC proliferation specifically at late rather than early/middle neurogenic stages, which was attributed to impaired lengthening of G1 phase. Coincidently, apical-to-basal interkinetic nuclear migration was accelerated in Pdk1 cKO cortices. Consequently, we detected an increased neuronal output at P0. We further showed the significant upregulation of the cell cycle regulator cyclin D1 and its activator Myc in the cKO cortices relative to those of control animals. Overall, we have identified a novel role for PDK1 in cortical neurogenesis. PDK1 functions as an upstream regulator of the Myc-cyclin D1 pathway to control the lengthening of G1 phase and the balance between RGC proliferation and differentiation.

Funder

National Natural Science Foundation of China

Scientific Research Foundation of Jiangsu Provincial Education Department, China

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3