Transcranial ultrasound stimulation modulates neural activities during NREM and REM depending on the stimulation phase of slow oscillations and theta waves in the hippocampus

Author:

Dong Shuxun12,Xie Zhenyu12,Yuan Yi12

Affiliation:

1. School of Electrical Engineering, Yanshan University , Qinhuangdao 066004 , China

2. Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University , Qinhuangdao 066004 , China

Abstract

Abstract Modulation of the hippocampal neural activity by low-intensity transcranial ultrasound stimulation depends on the phase of theta rhythm and can also regulate sleep rhythm. However, until now, the modulatory effect of ultrasound stimulation on neural activity in different sleep states depending on the phase of local field potential stimulation in the hippocampus was unclear. To answer this question, closed-loop ultrasound stimulation was applied to in-phase (upstate)/out-of-phase slow oscillations in the hippocampus during non-rapid eye movement sleep, and to the peaks and troughs of theta oscillations in the hippocampus during wake in a mouse model. Local field potential of the hippocampus within 3-h after the ultrasound stimulation during light-on sleep cycle was recorded. We found that (i) under slow-oscillation in-phase stimulation, ultrasound stimulation upregulated the non-rapid eye movement ratio and decreased the wake ratio. Furthermore, it increased the ripple density during non-rapid eye movement and enhanced the coupling of the spindle–ripple during non-rapid eye movement as well as the theta–high gamma phase–amplitude coupling during the REM period. In addition, theta during the REM period showed a more stable oscillation mode. (ii) Under slow-oscillation out-of-phase stimulation, ultrasound stimulation increased the density of ripple during non-rapid eye movement and enhanced the theta–high gamma phase–amplitude coupling strength during REM. Furthermore, theta oscillations during REM were significantly slower and showed higher variability. (iii) Under the phase-locked peak and trough stimulation of theta oscillation, ultrasound stimulation increased the ripple density during non-rapid eye movement, weakened the coupling strength of spindle–ripple during non-rapid eye movement, and enhanced theta–high gamma phase–amplitude coupling during REM. However, theta oscillation mode was not changed significantly during REM. The above results suggest that the regulatory effect of ultrasound stimulation on neural activity in different sleep states depends on the stimulation phases of slow oscillations and theta waves in the hippocampus.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hebei Province

Scientific and Technological Innovation 2030

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3