Sex Differences in Cortical Morphometry and White Matter Microstructure During Brain Aging and Their Relationships to Cognition

Author:

Sang Feng12,Chen Yaojing12,Chen Kewei3,Dang Mingxi12,Gao Shudan12,Zhang Zhanjun12

Affiliation:

1. State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China

2. Beijing Aging Brain Rejuvenation Initiative Centre, Beijing Normal University, Beijing 100875, China

3. Banner Alzheimer’s Institute, Phoenix, AZ 85006, USA

Abstract

Abstract Changes in brain structure are associated with aging, and accompanied by the gradual deterioration of cognitive functions, which manifests differently in males and females. Here, we quantify the age-related spatial aging patterns of brain gray and white matter structures, their volume reduction rate, their relationships with specific cognitive functions, as well as differences between males and females in a cross-sectional nondementia dataset. We found that both males and females showed extensive age-related decreases in the volumes of most gray matter and white matter regions. Females have larger regions where the volume decreases with age and a greater slope (females: 0.199%, males: 0.183%) of volume decrease in gray matter. For white matter, no significant sex differences were found in age-related regions, and the slope of volume decrease. More significant associations were identified between brain structures and cognition in males during aging than females. This study explored the age-related regional variations in gray matter and white matter, as well as the sex differences in a nondemented elderly population. This study helps to further understand the aging of the brain structure and sex differences in the aging of brain structures and provides new evidence for the aging of nondemented individuals.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

National Science Fund for Distinguished Young Scholars

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3