Different Principles Govern Different Scales of Brain Folding

Author:

Mallela Arka N1ORCID,Deng Hansen1,Bush Alan2,Goldschmidt Ezequiel1

Affiliation:

1. Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA

2. Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA

Abstract

Abstract The signature folds of the human brain are formed through a complex and developmentally regulated process. In vitro and in silico models of this process demonstrate a random pattern of sulci and gyri, unlike the highly ordered and conserved structure seen in the human cortex. Here, we account for the large-scale pattern of cortical folding by combining advanced fetal magnetic resonance imaging with nonlinear diffeomorphic registration and volumetric analysis. Our analysis demonstrates that in utero brain growth follows a logistic curve, in the absence of an external volume constraint. The Sylvian fissure forms from interlobar folding, where separate lobes overgrow and close an existing subarachnoid space. In contrast, other large sulci, which are the ones represented in existing models, fold through an invagination of a flat surface, a mechanistically different process. Cortical folding is driven by multiple spatially and temporally different mechanisms; therefore regionally distinct biological process may be responsible for the global geometry of the adult brain.

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3