Scaling patterns of cortical folding and thickness in early human brain development in comparison with primates

Author:

Demirci Nagehan1,Holland Maria A12

Affiliation:

1. Bioengineering Graduate Program, University of Notre Dame , Notre Dame, IN 46556, United States

2. Department of Aerospace and Mechanical Engineering, University of Notre Dame , Notre Dame, IN 46556, United States

Abstract

Abstract Across mammalia, brain morphology follows specific scaling patterns. Bigger bodies have bigger brains, with surface area outpacing volume growth, resulting in increased foldedness. We have recently studied scaling rules of cortical thickness, both local and global, finding that the cortical thickness difference between thick gyri and thin sulci also increases with brain size and foldedness. Here, we investigate early brain development in humans, using subjects from the Developing Human Connectome Project, scanned shortly after pre-term or full-term birth, yielding magnetic resonance images of the brain from 29 to 43 postmenstrual weeks. While the global cortical thickness does not change significantly during this development period, its distribution does, with sulci thinning, while gyri thickening. By comparing our results with our recent work on humans and 11 non-human primate species, we also compare the trajectories of primate evolution with human development, noticing that the 2 trends are distinct for volume, surface area, cortical thickness, and gyrification index. Finally, we introduce the global shape index as a proxy for gyrification index; while correlating very strongly with gyrification index, it offers the advantage of being calculated only from local quantities without generating a convex hull or alpha surface.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3