Spontaneous activity in cortical neurons is stereotyped and non-Poisson

Author:

Swindale Nicholas V1ORCID,Spacek Martin A2,Krause Matthew3ORCID,Mitelut Catalin4

Affiliation:

1. Department of Ophthalmology and Visual Sciences, University of British Columbia , 2550 Willow St., Vancouver, BC V5Z 3N9 , Canada

2. Division of Neurobiology, Department of Biology II, Ludwig-Maximilians-Universität München , Munich , Germany

3. Montreal Neurological Institute, McGill University , 3801 University St., Montreal, QC H3A 2B4 , Canada

4. Institute of Molecular and Clinical Ophthalmology, University of Basel , Mittlere Strasse 91, CH-4031 Basel , Switzerland

Abstract

Abstract Neurons fire even in the absence of sensory stimulation or task demands. Numerous theoretical studies have modeled this spontaneous activity as a Poisson process with uncorrelated intervals between successive spikes and a variance in firing rate equal to the mean. Experimental tests of this hypothesis have yielded variable results, though most have concluded that firing is not Poisson. However, these tests say little about the ways firing might deviate from randomness. Nor are they definitive because many different distributions can have equal means and variances. Here, we characterized spontaneous spiking patterns in extracellular recordings from monkey, cat, and mouse cerebral cortex neurons using rate-normalized spike train autocorrelation functions (ACFs) and a logarithmic timescale. If activity was Poisson, this function should be flat. This was almost never the case. Instead, ACFs had diverse shapes, often with characteristic peaks in the 1–700 ms range. Shapes were stable over time, up to the longest recording periods used (51 min). They did not fall into obvious clusters. ACFs were often unaffected by visual stimulation, though some abruptly changed during brain state shifts. These behaviors may have their origin in the intrinsic biophysics and dendritic anatomy of the cells or in the inputs they receive.

Funder

Canadian Institutes of Health Research

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3