Cortical thickness, gray matter volume, and cognitive performance: a crosssectional study of the moderating effects of age on their interrelationships

Author:

de Chastelaine Marianne1,Srokova Sabina1,Hou Mingzhu1,Kidwai Ambereen1,Kafafi Seham S2,Racenstein Melanie L1,Rugg Michael D13

Affiliation:

1. University of Texas at Dallas Center for Vital Longevity and School of Behavioral and Brain Sciences, , 1600, Viceroy Drive, Suite 800, Dallas, TX 75235 , United States

2. University of Notre Dame Department of Psychology, , Notre Dame, IN 46556 , United States

3. University of East Anglia School of Psychology, , Norwich NR4 7TJ , United Kingdom

Abstract

Abstract In a sample comprising younger, middle-aged, and older cognitively healthy adults (N = 375), we examined associations between mean cortical thickness, gray matter volume (GMV), and performance in 4 cognitive domains—memory, speed, fluency, and crystallized intelligence. In almost all cases, the associations were moderated significantly by age, with the strongest associations in the older age group. An exception to this pattern was identified in a younger adult subgroup aged <23 years when a negative association between cognitive performance and cortical thickness was identified. Other than for speed, all associations between structural metrics and performance in specific cognitive domains were fully mediated by mean cognitive ability. Cortical thickness and GMV explained unique fractions of the variance in mean cognitive ability, speed, and fluency. In no case, however, did the amount of variance jointly explained by the 2 metrics exceed 7% of the total variance. These findings suggest that cortical thickness and GMV are distinct correlates of domain-general cognitive ability, that the strength and, for cortical thickness, the direction of these associations are moderated by age, and that these structural metrics offer only limited insights into the determinants of individual differences in cognitive performance across the adult lifespan.

Funder

National Science Foundation

National Institute on Aging

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3