Neural substrates of individual differences in learning generalization via combined brain stimulation and multitasking training

Author:

Wards Yohan1ORCID,Ehrhardt Shane E1,Filmer Hannah L1ORCID,Mattingley Jason B123,Garner Kelly G1245,Dux Paul E1

Affiliation:

1. School of Psychology, The University of Queensland , McElwain Building, Campbell Road, St Lucia, Queensland 4072, Australia

2. Queensland Brain Institute, The University of Queensland , Building 79, Upland Road, St Lucia, Queensland 4072, Australia

3. Canadian Institute for Advanced Research , MaRS Centre, West tower, 661 University Ave., Suite 505, Toronto, Ontario M5G 1M1, Canada

4. School of Psychology, University of New South Wales , Mathews Building, Gate 11, Botany Street, Randwick, New South Wales 2052, Australia

5. School of Psychology, University of Birmingham , Hills Building, Edgbaston Park Rd, Birmingham B15 2TT, United Kingdom

Abstract

Abstract A pervasive limitation in cognition is reflected by the performance costs we experience when attempting to undertake two tasks simultaneously. While training can overcome these multitasking costs, the more elusive objective of training interventions is to induce persistent gains that transfer across tasks. Combined brain stimulation and cognitive training protocols have been employed to improve a range of psychological processes and facilitate such transfer, with consistent gains demonstrated in multitasking and decision-making. Neural activity in frontal, parietal, and subcortical regions has been implicated in multitasking training gains, but how the brain supports training transfer is poorly understood. To investigate this, we combined transcranial direct current stimulation of the prefrontal cortex and multitasking training, with functional magnetic resonance imaging in 178 participants. We observed transfer to a visual search task, following 1 mA left or right prefrontal cortex transcranial direct current stimulation and multitasking training. These gains persisted for 1-month post-training. Notably, improvements in visual search performance for the right hemisphere stimulation group were associated with activity changes in the right hemisphere dorsolateral prefrontal cortex, intraparietal sulcus, and cerebellum. Thus, functional dynamics in these task-general regions determine how individuals respond to paired stimulation and training, resulting in enhanced performance on an untrained task.

Funder

Australian Research Council

Department of Defence

Australian Government Research Training Program

National Health and Medical Research Council

Marie Sklodowska-Curie

Australian Research Council Discovery Early Career Research Award

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3