Functional Territories of Human Dentate Nucleus

Author:

Guell Xavier12,D’Mello Anila M1,Hubbard Nicholas A13,Romeo Rachel R14,Gabrieli John D E1,Whitfield-Gabrieli Susan15,Schmahmann Jeremy D2,Anteraper Sheeba Arnold15

Affiliation:

1. McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

2. Ataxia Unit, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA

3. University of Nebraska, Lincoln, Center for Brain, Biology, and Behavior, Department of Psychology, Lincoln, NE 68588, USA

4. Boston Children's Hospital, Division of Developmental Medicine, Boston, MA 02115, USA

5. Department of Psychology, Northeastern University, Boston, MA 02115, USA

Abstract

Abstract Anatomical connections link the cerebellar cortex with multiple sensory, motor, association, and paralimbic cerebral areas. The majority of fibers that exit cerebellar cortex synapse in dentate nuclei (DN) before reaching extracerebellar structures such as cerebral cortex, but the functional neuroanatomy of human DN remains largely unmapped. Neuroimaging research has redefined broad categories of functional division in the human brain showing that primary processing, attentional (task positive) processing, and default-mode (task negative) processing are three central poles of neural macroscale functional organization. This broad spectrum of human neural processing categories is represented not only in the cerebral cortex, but also in the thalamus, striatum, and cerebellar cortex. Whether functional organization in DN obeys a similar set of macroscale divisions, and whether DN are yet another compartment of representation of a broad spectrum of human neural processing categories, remains unknown. Here, we show for the first time that human DN are optimally divided into three functional territories as indexed by high spatio-temporal resolution resting-state MRI in 77 healthy humans, and that these three distinct territories contribute uniquely to default-mode, salience-motor, and visual cerebral cortical networks. Our findings provide a systems neuroscience substrate for cerebellar output to influence multiple broad categories of neural control.

Funder

La Caixa Banking Foundation

MGH Tosteson & Fund for Medical Discovery

National Institutes of Health

William and Flora Hewlett Foundation

Publisher

Oxford University Press (OUP)

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3