Citri Reticulatae Semen Extract Promotes Healthy Aging and Neuroprotection via Autophagy Induction in Caenorhabditis elegans

Author:

Long Tao12,Tang Yong13,He Yan-Ni12,He Chang-Long12,Chen Xue12,Guo Min-Song1,Wu Jian-Ming1,Yu Lu1,Yu Chong-Lin1,Yuen-Kwan Law Betty3,Qin Da-Lian1,Wu An-Guo1,Zhou Xiao-Gang12ORCID

Affiliation:

1. Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University , Luzhou, Sichuan , China

2. Central Nervous System Drug Key Laboratory of Sichuan Province , Luzhou, Sichuan , China

3. State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology , Macau , China

Abstract

Abstract Nutrition intervention has emerged as a potential strategy to delay aging and promote healthy longevity. Citri Reticulatae Semen (CRS) has diverse beneficial effects and has been used for thousands of years to treat pain. However, the health benefits of CRS in prolonging health span and improving aging-related diseases and the exact mechanisms remain poorly characterized. In this study, Caenorhabditis elegans (C. elegans) was used as a model organism to study the antiaging and health span promoting activities of 75% ethanol extract of CRS (CRSE). The results showed that treatment with CRSE at 1 000 μg/mL significantly extended the life span of worms by 18.93% without detriment to health span and fitness, as evidenced by the delayed aging-related phenotypes and increased body length and width, and reproductive output. In addition, CRSE treatment enhanced the ability of resistance to heat, oxidative, and pathogenic bacterial stress. Consistently, heat shock proteins and antioxidant enzyme-related and pathogenesis-related genes were up-regulated by CRSE treatment. Furthermore, CRSE supplementation also improved α-synuclein, 6-OHDA, and polyQ40-induced pathologies in transgenic C. elegans models of Parkinson’s disease and Huntington’s disease. The mechanistic study demonstrated that CRSE induced autophagy in worms, while the RNAi knockdown of 4 key autophagy-related genes, including lgg-1, bec-1, vps-34, and unc-51, remarkably abrogated the beneficial effects of CRSE on the extending of life span and health span and neuroprotection, demonstrating that CRSE exerts beneficial effects via autophagy induction in worms. Together, our current findings provide new insights into the practical application of CRS for the prevention of aging and aging-related diseases.

Funder

National Natural Science Foundation of China

The Science and Technology Planning Project of Sichuan Province

The Joint project of Luzhou Municipal People’s Government and Southwest Medical University

The Joint project of First People’s Hospital of Neijiang and Southwest Medical University

The project of Southwest Medical University

An open project of State Key Laboratory of Quality Research in Chinese Medicine

Publisher

Oxford University Press (OUP)

Subject

Geriatrics and Gerontology,Aging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3