High-energy interference-free K-lines synchrotron X-ray fluorescence microscopy of rare earth elements in hyperaccumulator plants

Author:

van der Ent Antony123ORCID,Brueckner Dennis4ORCID,Spiers Kathryn M4ORCID,Falch Ken Vidar4,Falkenberg Gerald4ORCID,Layet Clément15,Liu Wen-Shen6,Zheng Hong-Xiang6,Le Jean Marie7ORCID,Blaudez Damien5ORCID

Affiliation:

1. Université de Lorraine, INRAE, LSE, F-54000 Nancy , France

2. Laboratory of Genetics, Wageningen University and Research , The Netherlands

3. Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland , Australia

4. Deutsches Elektronen-Synchrotron DESY , Hamburg , Germany

5. Université de Lorraine, CNRS, LIEC, F-54000 , Nancy , France

6. School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University , China

7. LIEC, Université de Lorraine, CNRS, Metz , France

Abstract

Abstract Synchrotron-based micro-X-ray fluorescence analysis (µXRF) is a nondestructive and highly sensitive technique. However, element mapping of rare earth elements (REEs) under standard conditions requires care, since energy-dispersive detectors are not able to differentiate accurately between REEs L-shell X-ray emission lines overlapping with K-shell X-ray emission lines of common transition elements of high concentrations. We aim to test REE element mapping with high-energy interference-free excitation of the REE K-lines on hyperaccumulator plant tissues and compare with measurements with REE L-shell excitation at the microprobe experiment of beamline P06 (PETRA III, DESY). A combination of compound refractive lens optics (CRLs) was used to obtain a micrometer-sized focused incident beam with an energy of 44 keV and an extra-thick silicon drift detector optimized for high-energy X-ray detection to detect the K-lines of yttrium (Y), lanthanum (La), cerium (Ce), praseodymium (Pr), and neodymium (Nd) without any interferences due to line overlaps. High-energy excitation from La to Nd in the hyperaccumulator organs was successful but compared to L-line excitation less efficient and therefore slow (∼10-fold slower than similar maps at lower incident energy) due to lower flux and detection efficiency. However, REE K-lines do not suffer significantly from self-absorption, which makes XRF tomography of millimeter-sized frozen-hydrated plant samples possible. The K-line excitation of REEs at the P06 CRL setup has scope for application in samples that are particularly prone to REE interfering elements, such as soil samples with high concomitant Ti, Cr, Fe, Mn, and Ni concentrations.

Funder

Agence Nationale de la Recherche

Publisher

Oxford University Press (OUP)

Subject

Metals and Alloys,Biochemistry,Biomaterials,Biophysics,Chemistry (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3