Affiliation:
1. Department of Environmental Health, School of Public Health, China Medical University , Shenyang, Liaoning, People's Republic of China
Abstract
Abstract
Manganese (Mn) can accumulate in the striatum through the blood–brain barrier and cause neurotoxicity. It is mainly due to the decrease of dopamine (DA) levels in the striatum, which leads to extrapyramidal dysfunction. Netrin-1, as an axon guidance factor, can regulate the normal transmission of DA. However, few people have explored the role of netrin-1 in Mn-induced neurotoxicity. The purpose of the present study is to verify whether overexposure of Mn inhibits the axon attractant netrin-1, thereby damaging dopaminergic neuronal and motor function of mice. Here, we found that excessive Mn exposure reduces the expression of striatum netrin-1, tyrosine hydroxylase, DA receptor D3, and dopamine transporter 1, and the levels of serum netrin-1, and promotes dopaminergic neuronal and striatum injury, leading to DA transmission and motor dysfunction. Notably, recombinant mouse netrin-1 protein significantly antagonized Mn-induced neurotoxicity. These findings suggest that netrin-1 participates in Mn-induced motor dysfunction. Our findings may provide an experimental basis for fully elucidating the effects of Mn-induced neurotoxicity.
Funder
Natural Science Foundation of Liaoning Province
Publisher
Oxford University Press (OUP)
Subject
Metals and Alloys,Biochemistry,Biomaterials,Biophysics,Chemistry (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献