Biallelic mutations in RNA-binding protein ADAD2 cause spermiogenic failure and non-obstructive azoospermia in humans

Author:

Shi Baolu1ORCID,Shah Wasim1,Liu Li2,Gong Chenjia1,Zhou Jianteng1,Abbas Tanveer1,Ma Hui1,Zhang Huan1,Yang Menglei1,Zhang Yuanwei1,Ullah Nadeem1,Mahammad Zubair1,Khan Mazhar1,Murtaza Ghulam1,Ali Asim1,Khan Ranjha1,Sha Jiahao2,Yuan Yan2ORCID,Shi Qinghua13ORCID

Affiliation:

1. Division of Reproduction and Genetics, First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China , Hefei, China

2. State Key Laboratory of Reproductive Medicine, Nanjing Medical University , Nanjing, Jiangsu, China

3. Institute of Health and Medicine, Hefei Comprehensive National Science Center , Hefei, China

Abstract

Abstract STUDY QUESTION What are some pathogenic mutations for non-obstructive azoospermia (NOA) and their effects on spermatogenesis? SUMMARY ANSWER Biallelic missense and frameshift mutations in ADAD2 disrupt the differentiation of round spermatids to spermatozoa causing azoospermia in humans and mice. WHAT IS KNOWN ALREADY NOA is the most severe cause of male infertility characterized by an absence of sperm in the ejaculate due to impairment of spermatogenesis. In mice, the lack of the RNA-binding protein ADAD2 leads to a complete absence of sperm in epididymides due to failure of spemiogenesis, but the spermatogenic effects of ADAD2 mutations in human NOA-associated infertility require functional verification. STUDY DESIGN, SIZE, DURATION Six infertile male patients from three unrelated families were diagnosed with NOA at local hospitals in Pakistan based on infertility history, sex hormone levels, two semen analyses and scrotal ultrasound. Testicular biopsies were performed in two of the six patients. Adad2 mutant mice (Adad2Mut/Mut) carrying mutations similar to those found in NOA patients were generated using the CRISPR/Cas9 genome editing tool. Reproductive phenotypes of Adad2Mut/Mut mice were verified at 2 months of age. Round spermatids from the littermates of wild-type (WT) and Adad2Mut/Mut mice were randomly selected and injected into stimulated WT oocytes. This round spermatid injection (ROSI) procedure was conducted with three biological replicates and >400 ROSI-derived zygotes were evaluated. The fertility of the ROSI-derived progeny was evaluated for three months in four Adad2WT/Mut male mice and six Adad2WT/Mut female mice. A total of 120 Adad2Mut/Mut, Adad2WT/Mut, and WT mice were used in this study. The entire study was conducted over 3 years. PARTICIPANTS/MATERIALS, SETTING, METHODS Whole-exome sequencing was performed to detect potentially pathogenic mutations in the six NOA-affected patients. The pathogenicity of the identified ADAD2 mutations was assessed and validated in human testicular tissues and in mouse models recapitulating the mutations in the NOA patients using quantitative PCR, western blotting, hematoxylin-eosin staining, Periodic acid-Schiff staining, and immunofluorescence. Round spermatids of WT and Adad2Mut/Mut mice were collected by fluorescence-activated cell sorting and injected into stimulated WT oocytes. The development of ROSI-derived offspring was evaluated in the embryonic and postnatal stages. MAIN RESULTS AND THE ROLE OF CHANCE Three recessive mutations were identified in ADAD2 (MT1: c.G829T, p.G277C; MT2: c.G1192A, p.D398N; MT3: c.917_918del, p.Q306Rfs*43) in patients from three unrelated Pakistani families. MT1 and MT2 dramatically reduced the testicular expression of ADAD2, likely causing spermiogenesis failure in the NOA patients. Immunofluorescence analysis of the Adad2Mut/Mut male mice with the corresponding MT3 mutation showed instability and premature degradation of the ADAD2 protein, resulting in the spermiogenesis deficiency phenotype. Through ROSI, the Adad2Mut/Mut mice could produce pups with comparable embryonic development (46.7% in Adad2Mut/Mut versus 50% in WT) and birth rates (21.45 ± 10.43% in Adad2Mut/Mut versus 27.5 ± 3.536% in WT, P = 0.5044) to WT mice. The Adad2WT/Mut progeny from ROSI (17 pups in total via three ROSI replicates) did not show overt developmental defects and had normal fertility. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION This is a preliminary report suggesting that ROSI can be an effective treatment for infertile Adad2Mut/Mut mice. Further assisted reproductive attempts need to be carefully examined in humans during clinical trials. WIDER IMPLICATIONS OF THE FINDINGS Our work provides functional evidence that mutations in the ADAD2 gene are deleterious and cause consistent spermiogenic defects in both humans and mice. In addition, preliminary results show that ROSI can help Adad2Mut/Mut to produce biological progeny. These findings provide valuable clues for genetic counselling on the ADAD2 mutants-associated infertility in human males. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the National Natural Science Foundation of China (32000587, U21A20204, and 32061143006), and the National Key Research and Developmental Program of China (2019YFA0802600 and 2021YFC2700202). This work was also supported by Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China. The authors declare no competing interests.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Industrial and Manufacturing Engineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3