How exome sequencing improves the diagnostics and management of men with non‐syndromic infertility

Author:

Stallmeyer Birgit1,Dicke Ann‐Kristin1,Tüttelmann Frank1ORCID

Affiliation:

1. Centre of Medical Genetics Institute of Reproductive Genetics University of Münster Munster Germany

Abstract

AbstractMale infertility affects approximately 17% of all men and represents a complex disorder in which not only semen parameters such as sperm motility, morphology, and number of sperm are highly variable, but also testicular phenotypes range from normal spermatogenesis to complete absence of germ cells. Genetic factors significantly contribute to the disease but chromosomal aberrations, mostly Klinefelter syndrome, and microdeletions of the Y‐chromosome have remained the only diagnostically and clinically considered genetic causes. Monogenic causes remain understudied and, thus, often unidentified, leaving the majority of the male factor couple infertility pathomechanistically unexplained. This has been changing mostly because of the introduction of exome sequencing that allows the analysis of multiple genes in large patient cohorts. As a result, pathogenic variants in single genes have been associated with non‐syndromic forms of all aetiologic sub‐categories in the last decade.This review highlights the contribution of exome sequencing to the identification of novel disease genes for isolated (non‐syndromic) male infertility by presenting the results of a comprehensive literature search. Both, reduced sperm count in azoospermic and oligozoospermic patients, and impaired sperm motility and/or morphology, in asthenozoospermic and/or teratozoospermic patients are highly heterogeneous diseases with well over 100 different candidate genes described for each entity. Applying the standardized evaluation criteria of the ClinGen gene curation working group, 70 genes with at least moderate evidence to contribute to the disease are highlighted. The implementation of these valid disease genes in clinical exome sequencing is important to increase the diagnostic yield in male infertility and, thus, improve clinical decision‐making and appropriate genetic counseling.Future advances in androgenetics will continue to depend on large‐scale exome and genome sequencing studies of comprehensive international patient cohorts, which are the most promising approaches to identify additional disease genes and provide reliable data on the gene–disease relationship.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3