Established PABPN1 intranuclear inclusions in OPMD muscle can be efficiently reversed by AAV-mediated knockdown and replacement of mutant expanded PABPN1

Author:

Malerba Alberto1,Klein Pierre2,Lu-Nguyen Ngoc1,Cappellari Ornella3,Strings-Ufombah Vanessa4,Harbaran Sonal4,Roelvink Peter4,Suhy David4,Trollet Capucine2,Dickson George1

Affiliation:

1. Centres of Gene and Cell Therapy and Biomedical Sciences, School of Biological Sciences, Royal Holloway, University of London, Egham TW20 0EX, Surrey, UK

2. Sorbonne Université, INSERM, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS974, 47 bd de l’Hôpital, 75013 Paris, France

3. Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, UK

4. Benitec Biopharma, Hayward, CA 94545, USA

Abstract

Abstract Oculopharyngeal muscular dystrophy (OPMD) is a rare autosomal dominant late-onset muscular dystrophy affecting approximately 1:100 000 individuals in Europe. OPMD is mainly characterized by progressive eyelid drooping (ptosis) and dysphagia although muscles of the limbs can also be affected late in life. This muscle disease is due to a trinucleotide repeat expansion in the polyA-binding protein nuclear-1 gene. Patients express a protein with an 11–18 alanine tract that is misfolded and prone to form intranuclear inclusions, which are the hallmark of the disease. Other features of OPMD include muscle fibrosis and atrophy in affected muscles. Currently, no pharmacological treatments are available, and OPMD patients can only be referred to surgeons for cricopharyngeal myotomy or corrective surgery of extraocular muscles to ease ptosis. We recently tested a two-AAV `silence’ and `replace’ vector-based gene therapy treatment in a mouse model of OPMD. We demonstrate here that this gene therapy approach can revert already established insoluble aggregates and partially rescues the muscle from atrophy, which are both crucially important since in most cases OPMD patients already have an established disease when diagnosed. This strategy also prevents the formation of muscle fibrosis and stabilizes the muscle strength to the level of healthy muscles. Furthermore, we show here that similar results can be obtained using a single AAV vector incorporating both the `silence’ and `replace’ cassettes. These results further support the application of a gene therapy approach as a novel treatment for OPMD in humans.

Funder

French Association against Myopathies

Sorbonne University association

Institute of Myology

National Institute of Health and Medical Research

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology,General Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3