Disease modeling of core pre-mRNA splicing factor haploinsufficiency

Author:

Wood Katherine A12,Rowlands Charlie F12,Qureshi Wasay Mohiuddin Shaikh1,Thomas Huw B1,Buczek Weronika A1,Briggs Tracy A12,Hubbard Simon J1,Hentges Kathryn E1,Newman William G12,O’Keefe Raymond T1

Affiliation:

1. Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester

2. Center for Genomic Medicine, Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, St. Mary’s Hospital, The University of Manchester, Manchester Academic Health Science Centre Manchester, M13 9PT, UK

Abstract

AbstractThe craniofacial disorder mandibulofacial dysostosis Guion-Almeida type is caused by haploinsufficiency of the U5 snRNP gene EFTUD2/SNU114. However, it is unclear how reduced expression of this core pre-mRNA splicing factor leads to craniofacial defects. Here we use a CRISPR-Cas9 nickase strategy to generate a human EFTUD2-knockdown cell line and show that reduced expression of EFTUD2 leads to diminished proliferative ability of these cells, increased sensitivity to endoplasmic reticulum (ER) stress and the mis-expression of several genes involved in the ER stress response. RNA-Seq analysis of the EFTUD2-knockdown cell line revealed transcriptome-wide changes in gene expression, with an enrichment for genes associated with processes involved in craniofacial development. Additionally, our RNA-Seq data identified widespread mis-splicing in EFTUD2-knockdown cells. Analysis of the functional and physical characteristics of mis-spliced pre-mRNAs highlighted conserved properties, including length and splice site strengths, of retained introns and skipped exons in our disease model. We also identified enriched processes associated with the affected genes, including cell death, cell and organ morphology and embryonic development. Together, these data support a model in which EFTUD2 haploinsufficiency leads to the mis-splicing of a distinct subset of pre-mRNAs with a widespread effect on gene expression, including altering the expression of ER stress response genes and genes involved in the development of the craniofacial region. The increased burden of unfolded proteins in the ER resulting from mis-splicing would exceed the capacity of the defective ER stress response, inducing apoptosis in cranial neural crest cells that would result in craniofacial abnormalities during development.

Funder

Medical Research Council

Biotechnology and Biological Sciences Research Council

National Institute for Health Research Manchester Biomedical Research Centre

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology,General Medicine

Reference108 articles.

1. Spliceosome structure and function;Will;Cold Spring Harb. Perspect. Biol.,2011

2. A day in the life of the spliceosome;Matera;Nat. Rev. Mol. Cell Biol.,2014

3. Pre-mRNA splicing;Jurica;Mol. Cell,2003

4. The significant other: splicing by the minor spliceosome;Turunen;Wiley Interdiscip. Rev. RNA,2013

5. Splicing regulation: from a parts list of regulatory elements to an integrated splicing code;Wang;RNA,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3