Affiliation:
1. School of Software, Ningxia Polytechnic , YinChuan 750021, Ningxia, China
2. Department of Computer Engineering, West Tehran Branch, Islamic Azad University , Tehran, Iran
Abstract
Abstract
By combining centrality measures and community detection, a better insight into the nature of the evolution of important nodes in complex networks is obtained. Meanwhile, the dynamic identification of important nodes in complex networks can be enhanced by considering both local and global characteristics. Local characteristics focus on the immediate connections and interactions of a node within its neighbourhood, while global characteristics take into account the overall structure and dynamics of the entire network. Nodes with high local centrality in dynamic networks may play crucial roles in local information spreading or influence. On the global level, community detection algorithms have a significant impact on the overall network structure and connectivity between important nodes. Hence, integrating both local and global characteristics offers a more comprehensive understanding of how nodes dynamically contribute to the functioning of complex networks. For more comprehensive analysis of complex networks, this article identifies important nodes by considering local and global characteristics (INLGC). For local characteristic, INLGC develops a centrality measure based on network constraint coefficient, which can provide a better understanding of the relationship between neighbouring nodes. For global characteristic, INLGC develops a community detection method to improve the resolution of ranking important nodes. Extensive experiments have been conducted on several real-world datasets and various performance metrics have been evaluated based on the susceptible–infected–recovered model. The simulation results show that INLGC provides more competitive advantages in precision and resolution.
Funder
Integrated Innovation Demonstration of Key Technologies in Smart Lycium Barbarum Orchard
Research on Matching Harvesting Machinery
Publisher
Oxford University Press (OUP)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献