GLEE: Geometric Laplacian Eigenmap Embedding

Author:

Torres Leo1,Chan Kevin S2,Eliassi-Rad Tina3

Affiliation:

1. Network Science Institute, Northeastern University, Boston, MA 02115, USA

2. U.S. CCDC Army Research Laboratory, Adelphi, MD 20783, USA

3. Network Science Institute and Khoury College of Computer Sciences, Northeastern University, Boston, MA 02115, USA

Abstract

Abstract Graph embedding seeks to build a low-dimensional representation of a graph $G$. This low-dimensional representation is then used for various downstream tasks. One popular approach is Laplacian Eigenmaps (LE), which constructs a graph embedding based on the spectral properties of the Laplacian matrix of $G$. The intuition behind it, and many other embedding techniques, is that the embedding of a graph must respect node similarity: similar nodes must have embeddings that are close to one another. Here, we dispose of this distance-minimization assumption. Instead, we use the Laplacian matrix to find an embedding with geometric properties instead of spectral ones, by leveraging the so-called simplex geometry of $G$. We introduce a new approach, Geometric Laplacian Eigenmap Embedding, and demonstrate that it outperforms various other techniques (including LE) in the tasks of graph reconstruction and link prediction.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Computational Mathematics,Control and Optimization,Management Science and Operations Research,Computer Networks and Communications

Reference51 articles.

1. A tutorial on network embeddings;Chen,;Preprint,2018

2. Fast, warped graph embedding: unifying framework and one-click algorithm;Chen,;CoRR,2017

3. On the equivalence between node embeddings and structural graph representations;Srinivasan,;CoRR,2019

4. Latent Network Summarization

5. The simplex geometry of graphs;Devriendt,;J. Compl. Netw.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3