Integrating knowledge graphs into machine learning models for survival prediction and biomarker discovery in patients with non–small-cell lung cancer

Author:

Fang Chao,Arango Argoty Gustavo Alonso,Kagiampakis Ioannis,Khalid Mohammad Hassan,Jacob Etai,Bulusu Krishna C.,Markuzon NatashaORCID

Abstract

AbstractAccurate survival prediction for Non-Small Cell Lung Cancer (NSCLC) patients remains a significant challenge for the scientific and clinical community despite decades of advanced analytics. Addressing this challenge not only helps inform the critical aspects of clinical study design and biomarker discovery but also ensures that the ‘right patient’ receives the ‘right treatment’. However, survival prediction is a highly complex task, given the large number of ‘omics; and clinical features, as well as the high degree of freedom that drive patient survival. Prior knowledge could play a critical role in uncovering the complexity of a disease and understanding the driving factors affecting a patient’s survival. We introduce a methodology for incorporating prior knowledge into machine learning–based models for prediction of patient survival through Knowledge Graphs, demonstrating the advantage of such an approach for NSCLC patients. Using data from patients treated with immuno-oncologic therapies in the POPLAR (NCT01903993) and OAK (NCT02008227) clinical trials, we found that the use of knowledge graphs yielded significantly improved hazard ratios, including in the POPLAR cohort, for models based on biomarker tumor mutation burden compared with those based on knowledge graphs. Use of a model-defined mutational 10-gene signature led to significant overall survival differentiation for both trials. We provide parameterized code for incorporating knowledge graphs into survival analyses for use by the wider scientific community.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3