Spatially explicit Bayesian hierarchical models improve estimates of avian population status and trends

Author:

Smith Adam C1ORCID,D. Binley Allison2ORCID,Daly Lindsay1ORCID,Edwards Brandon P M12ORCID,Ethier Danielle3ORCID,Frei Barbara4ORCID,Iles David1,Meehan Timothy D5,Michel Nicole L5,Smith Paul A6

Affiliation:

1. Canadian Wildlife Service, Environment Climate Change Canada , Ottawa, Ontario , Canada

2. Department of Biology, Carleton University , Ottawa, Ontario , Canada

3. Birds Canada , Port Rowan, Ontario , Canada

4. Wildlife Research Division, Environment Climate Change Canada , Montreal, Québec , Canada

5. National Audubon Society , New York, New York , USA

6. Wildlife Research Division, Environment Climate Change Canada , Ottawa, Ontario , Canada

Abstract

Abstract Population trend estimates form the core of avian conservation assessments in North America and indicate important changes in the state of the natural world. The models used to estimate these trends would be more efficient and informative for conservation if they explicitly considered the spatial locations of the monitoring data. We created spatially explicit versions of some standard status and trend models applied to long-term monitoring data for birds across North America. We compared the spatial models to simpler non-spatial versions of the same models, fitting them to simulated data and real data from 3 broad-scale monitoring programs: the North American Breeding Bird Survey (BBS), the Christmas Bird Count, and a collection of programs we refer to as Migrating Shorebird Surveys. All the models generally reproduced the simulated trends and population trajectories when there were many data, and the spatial models performed better when there were fewer data and in locations where the local trends differed from the range-wide means. When fit to real data, the spatial models revealed interesting spatial patterns in trend, such as recent population increases along the Appalachian Mountains for the Eastern Whip-poor-will (Antrostomus vociferus), that were much less apparent in results from the non-spatial versions. The spatial models also had higher out-of-sample predictive accuracy than the non-spatial models for a selection of species using BBS data. The spatially explicit sharing of information allows fitting the models with much smaller strata, allowing for finer-grained patterns in trends. Spatially informed trends will facilitate more locally relevant conservation, highlight areas of conservation successes and challenges, and help generate and test hypotheses about the spatially dependent drivers of population change.

Publisher

Oxford University Press (OUP)

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Reference74 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3