Characteristics, relationships and precision of direct acoustic-to-seismic coupling measurements from local explosions

Author:

Anthony Robert E1,Watzak Joshua12,Ringler Adam T1,Wilson David C1

Affiliation:

1. U.S. Geological Survey, Albuquerque Seismological Laboratory, Kirtland AFB, Albuquerque , NM 87117, USA

2. Department of Geology & Geophysics, Texas A&M University, College Station , TX 77843, USA

Abstract

SUMMARY Acoustic energy originating from explosions, sonic booms, bolides and thunderclaps have been recorded on seismometers since the 1950s. Direct pressure loading from the passing acoustic wave has been modelled and consistently observed to produce ground deformations of the near surface that have retrograde elliptical particle motions. In the past decade, increased deployments of colocated seismometers and infrasound sensors have driven efforts to use the transfer function between direct acoustic-to-seismic coupling to infer near-surface material properties including seismic velocity structure and elastic moduli. In this study, we use a small aperture (≈600 m) array of broadband seismometers installed in different manners and depths in both granite and sedimentary overburden to understand the fundamental nature and repeatability of seismic excitation from 1 to 15 Hz using horizontally propagating acoustic waves generated by 97 local (2–10 km) explosions. In agreement with modelling, we find that the ground motions induced by acoustic-to-seismic coupling attenuate rapidly with depth. We confirm the modelled relation between acoustic and ground motion amplitudes, but show that within one acoustic wavelength, the uncertainty in the transfer coefficient between seismic and acoustic energy at a given seismic station increases linearly with separation distance between the seismic and acoustic sensor. We attribute this observation to the rapid decorrelation of the infrasonic wavefield across small spatial scales and recommend colocating seismic and infrasound sensors for use in studies seeking to invert for near-surface material properties. Additionally, contrary to acoustic-to-seismic coupling theory and prior observations, we find that seismometers emplaced in granite do not record retrograde elliptical particle motions in response to direct pressure loading. We rule out seismometer tilt effects as a likely source of this observations and suggest that existing models of acoustic-to-seismic excitation may be too simplistic for seismometers placed in high rigidity materials.

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3