Installation and Performance of the Albuquerque Seismological Laboratory Small-Aperture Posthole Array

Author:

Anthony Robert E.1,Ringler Adam T.1,Wilson David C.1,Zebulon Maharrey J.2,Gyure Gary2,Pepiot Aaron1,Sandoval Leo D.2,Sandoval Samuel23,Telesha Thomas1,Vallo Gilbert2,Voss Nicholas2

Affiliation:

1. U.S. Geological Survey, Albuquerque Seismological Laboratory, Albuquerque, New Mexico, U.S.A.

2. KBR, Albuquerque Seismological Laboratory, Albuquerque, New Mexico, U.S.A.

3. Now at Becton Dickerson, Albuquerque, New Mexico, U.S.A.

Abstract

Abstract The Global Seismographic Network (GSN) has been used extensively by seismologists to characterize large earthquakes and image deep earth structure. Although the network’s original design goals have been met, the seismological community has suggested that the incorporation of small-aperture seismic arrays at select sites may improve performance of the network and enable new observations. As a pilot study for this concept, we have created a 500 m aperture, nine-element broadband seismic array around the GSN station ANMO (Albuquerque, New Mexico) at the U.S. Geological Survey Albuquerque Seismological Laboratory (ASL). The array was formed by supplementing the secondary borehole seismometer (90 m depth) at ANMO with eight additional 2.6 m posthole sites. Each station’s seismometer was oriented using a fiber optic gyroscope to within 2.0° of north. Data quality, particularly on the vertical components, is excellent with median power levels closely tracking the secondary sensor at ANMO at frequencies lower than 1 Hz. Horizontal component data are more variable at low frequencies (<0.02  Hz), with the type of installation and local geography appearing to strongly influence the amount of tilt-induced noise. Throughout the article, we pose several fundamental questions related to the variability and precision of seismic wavefield measurements that we seek to address with data from this array. In addition, we calculate the array response and show a few examples of using the array to obtain back azimuths of a local event and a continuous narrowband noise source. The apparent velocity of the event across the array is then used to infer the local P-wave velocity at the ASL. Near-real-time data collected from the array along with collocated meteorological, magnetic, and infrasound data are freely available in near-real time from the Incorporated Research Institutions for Seismology Data Management Center.

Publisher

Seismological Society of America (SSA)

Subject

Geophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3