Broad-band ocean bottom seismometer noise properties

Author:

Janiszewski Helen A1ORCID,Eilon Z2,Russell J B3ORCID,Brunsvik B2,Gaherty J B4,Mosher S G5,Hawley W B6,Coats S1

Affiliation:

1. Department of Earth Sciences, University of Hawaiʻi at Mānoa , Honolulu, HI 96822, USA

2. Department of Earth Science, University of California , Santa Barbara, CA 93106, USA

3. Department of Earth, Environmental and Planetary Sciences, Brown University , Providence, RI 02912, USA

4. School of Earth & Sustainability, Northern Arizona University , Flagstaff, AZ 86011, USA

5. Department of Earth and Environmental Sciences, University of Ottawa , Ottawa, ON K1N 6N5, Canada

6. Lamont-Doherty Earth Observatory of Columbia University , Palisades, NY 10964-1000, USA

Abstract

SUMMARY We present a new compilation and analysis of broad-band ocean bottom seismometer noise properties from 15 yr of seismic deployments. We compile a comprehensive data set of representative four-component (seismometer and pressure gauge) noise spectra and cross-spectral properties (coherence, phase and admittance) for 551 unique stations spanning 18 U.S.-led experiments. This is matched with a comprehensive compilation of metadata parameters related to instrumentation and environmental properties for each station. We systematically investigate the similarity of noise spectra by grouping them according to these metadata parameters to determine which factors are the most important in determining noise characteristics. We find evidence for improvements in similarity of noise properties when grouped across parameters, with groupings by seismometer type and deployment water depth yielding the most significant and interpretable results. Instrument design, that is the entire deployed package, also plays an important role, although it strongly covaries with seismometer and water depth. We assess the presence of traditional sources of tilt, compliance, and microseismic noise to characterize their relative role across a variety of commonly used seismic frequency bands. We find that the presence of tilt noise is primarily dependent on the type of seismometer used (covariant with a particular subset of instrument design), that compliance noise follows anticipated relationships with water depth, and that shallow, oceanic shelf environments have systematically different microseism noise properties (which are, in turn, different from instruments deployed in shallow lake environments). These observations have important implications for the viability of commonly used seismic analysis techniques. Finally, we compare spectra and coherences before and after vertical channel tilt and compliance noise removal to evaluate the efficacy and limitations of these now standard processing techniques. These findings may assist in future experiment planning and instrument development, and our newly compiled noise data set serves as a building block for more targeted future investigations by the marine seismology community.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3