Current‐Induced Noise in Ocean Bottom Seismic Data: Insights From a Laboratory Water Flume Experiment

Author:

Wu Yuechu1,Yang Ting123ORCID,Liu Dan1,Dai Yi4,An Chao5ORCID

Affiliation:

1. OBS Laboratory Department of Ocean Science and Engineering Southern University of Science and Technology Shenzhen China

2. Shanghai Sheshan National Geophysical Observatory Shanghai China

3. Southern Marine Science and Engineering Guangdong Laboratory Guangzhou China

4. State Key Laboratory of Ocean Engineering Shanghai Jiao Tong University Shanghai China

5. Key Laboratory of Hydrodynamics (Ministry of Education) School of Naval Architecture Ocean and Civil Engineering Shanghai Jiao Tong University Shanghai China

Abstract

AbstractThe ocean‐bottom currents are believed to be largely responsible for the high noise level in ocean bottom seismograph (OBS) data, in particular on the horizontal components. Due to the lack of in‐situ experiments and measurements, the generation mechanism and characteristics of the current‐induced noise are still poorly understood. In this paper, we designed an experiment to explore the features of current‐induced noise. A sensor module from a typical passive‐source OBS was installed in a water flume that can produce controllable steady water flows. We measured and analyzed the recorded noise with changing current velocities, with and without shielding. With other noise sources, such as infragravity waves precluded, this experiment demonstrates that the currents can generate low‐frequency noise, particularly <0.1 Hz. The noise level depends on the current velocity as well as the frequency. While the current‐induced noise affects the horizontal components significantly, its impacts on the vertical component appear negligible. The experiment shows that current‐induced noise has a dominant direction approximately perpendicular to the currents, a pattern consistent with an actual OBS on the flank of Mariana Trench, where the current direction is supposed to be along the trench. Shielding the sensor module with a plastic casing can substantially suppress the noise, indicating that shielding is a practical, low‐cost scheme to reduce the current‐induced noise.

Funder

Shenzhen Science and Technology Innovation Program

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3