Wavefield reconstruction and wave equation inversion for seismic surface waves

Author:

Shaiban A1,de Ridder S A L1ORCID,Curtis A1

Affiliation:

1. School of GeoSciences and Grant Institute of Earth Science, University of Edinburgh, Edinburgh EH93FE, UK

Abstract

SUMMARY Surface waves are a particular type of seismic wave that propagate around the surface of the Earth, but which oscillate over depth ranges beneath the surface that depend on their frequency of oscillation. This causes them to travel with a speed that depends on their frequency, a property called dispersion. Estimating surface wave dispersion is of interest for many geophysical applications using both active and passive seismic sources, not least because the speed–frequency relationship can be used to infer the subsurface velocity structure at depth beneath the surface. We present an inversion scheme that exploits spatial and temporal relationships in the scalar Helmholtz (wave) equation to estimate dispersion relations of the elastic surface wave data in both active and passive surveys, while also reconstructing the wavefield continuously in space (i.e. between the receivers at which the wavefield was recorded). We verify the retrieved dispersive phase velocity by comparing the results to dispersion analysis in the frequency-slowness domain, and to the local calculation of dispersion using modal analysis. Synthetic elastic examples demonstrate the method under a variety of recording scenarios. The results show that despite the scalar approximation made to represent these intrinsically elastic waves, the proposed method reconstructs both the wavefield and the phase dispersion structure even in the case of strong aliasing and irregular sampling.

Funder

University of Edinburgh

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Reference38 articles.

1. Space and time spectra of stationary stochastic waves, with special reference to microtremors;Aki;Bull. Earthq. Res. Inst.,1957

2. Pinntomo: seismic tomography using physics-informed neural networks;bin Waheed,2021

3. Volumetric wavefield recording and wave equation inversion for near-surface material properties;Curtis;Geophysics,2002

4. Eurasian fundamental mode surface wave phase velocities and their relationship with tectonic structures;Curtis;J. geophys. Res. —Solid Earth,1998

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3