An unsupervised learning approach to deblend seismic data from denser shot coverage surveys

Author:

Wang Kunxi1ORCID,Hu Tianyue1ORCID,Wang Shangxu2

Affiliation:

1. School of Earth and Space Sciences, Peking University , Beijing 100871, China

2. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum , Beijing 102249, China

Abstract

SUMMARY The simultaneous source data obtained by simultaneous source acquisition contain crosstalk noise and cannot be directly used in conventional data processing procedures. Therefore, it is necessary to deblend the blended wavefield to obtain the conventionally acquired single-shot recordings. In this study, we propose an iterative inversion method based on the unsupervised deep neural network (UDNN) to deblend the simultaneous source data from a denser shot coverage survey (DSCS). In the common receiver gather (CRG), the coherent effective signals in the blended data of the primary and secondary sources are similar. We exploit the excellent nonlinear optimization capability of the U-net network to extract similar coherent signals from the blended data of the primary and secondary sources by minimizing the total loss function. The proposed UDNN method does not need to use the raw unblended data as label data, which solves the problem of missing label data and is suitable for deblending the simultaneous source data in different work areas with complex underground structures. One synthetic data and one field data examples are used to prove that the proposed method can suppress crosstalk noise and protect weak effective signals effectively, and achieve good effectiveness for the separation of simultaneous source data.

Funder

Peking University

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3