Iterative deblending using unsupervised learning with double-deep neural networks

Author:

Wang Kunxi1ORCID,Hu Tianyue2ORCID,Wang Shangxu3ORCID

Affiliation:

1. Peking University, School of Earth and Space Sciences, Institute of Energy, Institute for Artificial Intelligence, Beijing, China.

2. Peking University, School of Earth and Space Sciences, Institute of Energy, Institute for Artificial Intelligence, Beijing, China. (corresponding author)

3. China University of Petroleum, State Key Laboratory of Petroleum Resources and Prospecting, Beijing, China.

Abstract

Simultaneous source acquisition technology can greatly improve seismic acquisition efficiency. However, due to continuous shooting and serious crosstalk noise of the adjacent sources in seismic data, simultaneous source data cannot be directly used in conventional data processing procedures. Therefore, simultaneous source data need to be deblended to obtain the conventional shot record. Under densely sampled sources, we have developed a novel unsupervised deep learning (UDL) method based on the double-deep neural networks for iterative inversion deblending of simultaneous source data. Our UDL, which is mainly composed of the residual neural network (R-net) and the U-net neural network, has excellent nonlinear optimization ability. The total loss function design can optimize our UDL in the correct direction and avoid the problem of overfitting. By minimizing the total loss function, the R-net and U-net branches of the UDL can extract the coherent effective signals of all sources and suppress the crosstalk noise. The most prominent advantage of our UDL method is that it does not require label data, and the training data set does not contain raw unblended data, thus solving the problem of missing training data sets. The examples with two synthetic and one field data set are used to prove the effectiveness of iterative inversion deblending of simultaneous source data based on our UDL method when sources are within a small distance of each other. By comparing our UDL method with the traditional curvelet-based and contourlet-based methods, the superiority of our method in the quality of separation results is demonstrated.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3