Haemodialysis therapy and sustainable growth: a corporate experience in France

Author:

Bendine Georges1,Autin Fabien1,Fabre Bruno2,Bardin Olivier2,Rabasco François1,Cabanel Jean-Marc1,Chazot Charles1

Affiliation:

1. NephroCare France, Fresnes, France

2. Fresenius Medical Care, Fresnes, France

Abstract

Abstract Introduction Sustainable growth and environmental issues are currently a topic for all human activities, and dialysis represents a real challenge in this field because of high water and power consumption and the production of large amounts of care-related waste. In this article we describe data collection implemented in the NephroCare centres in France and the changes observed during a 13-year period regarding environmental parameters. Methods Monthly data collection (eco-reporting) was implemented in NephroCare centres in France in 2005. It covers three topics designed as key performance indicators (KPIs): electricity and water consumption and care-related waste production expressed, respectively, as kilowatt-hour (kWh), litres (L) and kilograms per session. We report on the three action plans (2005–10, 2011–14 and 2015–18) and changes observed during this 13-year period. Results During the period, power and water consumption declined by 29.6% (from 23.1 to 16.26 kWh/session) and 52% (from 801 to 382 L/session), respectively. At the same time, the yearly number of dialysis sessions has increased from 169 335 to 399 336. The sources of savings came both from improvements in the dialysis technology (dialysis machines and water treatment systems) and from updating and remodelling of the dialysis unit equipment and buildings. The care-related waste decreased from 1.8 to 1.1 kg because of regular staff training and the retrofiltration system, allowing the voiding of the remaining saline solution after dialysis. These savings have been estimated as equivalent to 102 440 tons of carbon dioxide. Discussion Implementation of KPIs and their regular monitoring by trained staff to evaluate water and power consumption and the reduction of care-related water production are essential to implement actions to reduce the impact of dialysis on the environment. These data show the importance of water treatment and dialysis technology to decrease water and power consumption and the production of care-related waste as well as upgrading or remodelling of buildings housing dialysis units. Other measures are discussed, including the reuse of rejected water by reverse osmosis, as well as behavioural changes that are needed to reach sustainable development of dialysis. Conclusion The first step to reach ‘green’ dialysis is to collect precise information from defined KPIs. This is the only way to design action plans to reduce the impact of dialysis therapy on the environment. Beyond this, the nephrology community must be sensitized to this challenge to be proactive and to anticipate future regulations.

Publisher

Oxford University Press (OUP)

Subject

Transplantation,Nephrology

Reference13 articles.

1. Estimate of the carbon footprint of the US health care sector;Chung;JAMA,2009

2. Toward green dialysis: focus on water savings;Ponson;Hemodial Int,2014

3. Personal viewpoint: hemodialysis–water, power, and waste disposal: rethinking our environmental responsibilities;Agar;Hemodial Int,2012

4. An integrated quality management system for healthcare;Jonker;Open Med J,2017

5. EuCliD—a medical registry;Steil;Methods Inf Med,2004

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3