Does online high-volume hemodiafiltration offer greater efficiency and sustainability compared with high-flux hemodialysis? A detailed simulation analysis anchored in real-world data

Author:

Canaud Bernard1ORCID,Gagel Alfred2,Peters Arne2,Maierhofer Andreas2,Stuard Stefano3

Affiliation:

1. Nephrology Department, Montpellier University, School of Medicine, and Foundation Ch. Mion, AIDER-Santé , Montpellier , France

2. Global Research and Development, Fresenius Medical Care Deutschland GmbH, Care Enablement , Bad Homburg , Germany

3. Clinical & Therapeutic Governance, Fresenius Medical Care, Global Medical Office, EMEA Clinical & Therapeutic Governance , Bad Homburg , Germany

Abstract

ABSTRACT Recent findings, including the CONVINCE (comparison of high-dose HDF with high-flux HD) study report, suggest the superiority of high-volume hemodiafiltration (HDF) over high-flux hemodialysis (HD) in improving patients’ outcomes. Despite positive patient outcomes, concerns have arisen about the potential negative environmental impact of high-volume HDF, as it may lead to increased water and dialysis fluid consumption and higher waste production. In this manuscript, we address the environmental impact of high-volume HDF, focusing on three key factors: water treatment consumption, dialysis fluid consumption, and solute efficiency markers of HD and HDF. By optimizing HDF prescription through adjustments in operational capabilities, while keeping a high blood flow (i.e., >350 ml/min) such as reducing the QD/QB ratio to 1.2 rather than 1.4 or 1.5 and incorporating automated ultrafiltration and substitution control, we demonstrate that HDF delivers a higher dialysis dose for small- and middle-molecule uremic compounds with the same dialysis fluid consumption, and at equal dialysis doses dialysis fluid consumption is reduced. This finding is supported by real-world data from 26 031 patients who underwent high-volume postdilution HDF at a reduced dialysis flow (430 mL/min) and achieved an effective OCMKt/V of 1.70 (where “OCM” stands for online clearance measurement, “K” represents effective dialysis clearance and “V” denotes total body water measured by multifrequency bioimpedance). In addition, simulation modeling calculations, using blood extraction coefficient, dialysate saturation coefficient and solute clearances with urea (small molecular weight) and β2-microglobulin (middle molecular weight), consistently show the superiority of postdilution HDF to HD. This holds true even with a significant reduction in dialysis flow down to 430 mL/min, reflecting QD/QB ratio of 1.2. Postdilution HDF generates high ultrafiltrate flow (up to 35% of blood flow), delivering saturated ultrafiltrate to the lower solute concentration containing effluent dialysate, thus enhancing solute clearance which opens the way to reduce the dialysis flow. In conclusion, our analysis, combining simulation and real-world data, suggests that postdilution HDF could be a more environmentally friendly treatment option compared with conventional HD. Additionally, automated user-friendly functions that minimize dialysis fluid use can further strengthen this environmental benefit while enhancing efficiency.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3