Global Dynamics for the Two-dimensional Stochastic Nonlinear Wave Equations

Author:

Gubinelli Massimiliano12,Koch Herbert13,Oh Tadahiro4,Tolomeo Leonardo134

Affiliation:

1. Hausdorff Center for Mathematics, The University of Bonn, Endenicher Allee 60, D-53115 Bonn, Germany

2. Institute for Applied Mathematics, The University of Bonn, Endenicher Allee 60, D-53115 Bonn, Germany

3. Mathematical Institute, The University of Bonn, Endenicher Allee 60, D-53115 Bonn, Germany

4. School of Mathematics, The University of Edinburgh, and The Maxwell Institute for the Mathematical Sciences, James Clerk Maxwell Building The King’s Buildings, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK

Abstract

Abstract We study global-in-time dynamics of the stochastic nonlinear wave equations (SNLW) with an additive space-time white noise forcing, posed on the two-dimensional torus. Our goal in this paper is two-fold. (1) By introducing a hybrid argument, combining the $I$-method in the stochastic setting with a Gronwall-type argument, we first prove global well-posedness of the (renormalized) cubic SNLW in the defocusing case. Our argument yields a double exponential growth bound on the Sobolev norm of a solution. (2) We then study the stochastic damped nonlinear wave equations (SdNLW) in the defocusing case. In particular, by applying Bourgain’s invariant measure argument, we prove almost sure global well-posedness of the (renormalized) defocusing SdNLW with respect to the Gibbs measure and invariance of the Gibbs measure.

Funder

European Research Council

Deutsche Forschungsgemeinschaft

Hausdorff Center for Mathematics under Germany’s Excellence Strategy

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference55 articles.

1. Trivial solutions for a non-linear two-space-dimensional wave equation perturbed by space-time white noise;Albeverio;Stochastics Stochastics Rep.,1996

2. On the probabilistic Cauchy theory of the cubic nonlinear Schrödinger equation on ${\mathbb{Rg}}$$^d$, d$\geq $3;Bényi;Trans. Amer. Math. Soc. Ser. B,2015

3. Periodic nonlinear Schrödinger equation and invariant measures;Bourgain;Comm. Math. Phys.,1994

4. Invariant measures for the 2D-defocusing nonlinear Schrödinger equation;Bourgain;Comm. Math. Phys.,1996

5. Invariant Gibbs measures for the three-dimensional wave equation with a Hartree nonlinearity II: dynamics;Bringmann

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3