On the probabilistic Cauchy theory of the cubic nonlinear Schrödinger equation on ℝ^{𝕕}, 𝕕≥3

Author:

Bényi Árpád,Oh Tadahiro,Pocovnicu Oana

Abstract

We consider the Cauchy problem of the cubic nonlinear Schrödinger equation (NLS) : i t u + Δ u = ± | u | 2 u : i \partial _t u + \Delta u = \pm |u|^{2}u on R d \mathbb {R}^d , d 3 d \geq 3 , with random initial data and prove almost sure well-posedness results below the scaling-critical regularity s c r i t = d 2 2 s_\mathrm {crit} = \frac {d-2}{2} . More precisely, given a function on R d \mathbb {R}^d , we introduce a randomization adapted to the Wiener decomposition, and, intrinsically, to the so-called modulation spaces. Our goal in this paper is three-fold. (i) We prove almost sure local well-posedness of the cubic NLS below the scaling-critical regularity along with small data global existence and scattering. (ii) We implement a probabilistic perturbation argument and prove ‘conditional’ almost sure global well-posedness for d = 4 d = 4 in the defocusing case, assuming an a priori energy bound on the critical Sobolev norm of the nonlinear part of a solution; when d 4 d \ne 4 , we show that conditional almost sure global well-posedness in the defocusing case also holds under an additional assumption of global well-posedness of solutions to the defocusing cubic NLS with deterministic initial data in the critical Sobolev regularity. (iii) Lastly, we prove global well-posedness and scattering with a large probability for initial data randomized on dilated cubes.

Publisher

American Mathematical Society (AMS)

Reference63 articles.

1. Loss of regularity for supercritical nonlinear Schrödinger equations;Alazard, Thomas;Math. Ann.,2009

2. 𝐿^{𝑝} properties for Gaussian random series;Ayache, Antoine;Trans. Amer. Math. Soc.,2008

3. Modulation spaces, Wiener amalgam spaces, and Brownian motions;Bényi, Árpád;Adv. Math.,2011

4. Árpad Bényi, Tadahiro Oh, and Oana Pocovnicu, Wiener randomization on unbounded domains and an application to almost sure well-posedness of NLS, to appear in Excursions in Harmonic Analysis.

5. Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations;Bourgain, J.;Geom. Funct. Anal.,1993

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3