Homological Percolation: The Formation of Giant k-Cycles

Author:

Bobrowski Omer1,Skraba Primoz2

Affiliation:

1. Viterbi Faculty of Electrical Engineering, Technion–Israel Institute of Technology, Haifa, 3200003, Israel

2. School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, UK

Abstract

Abstract In this paper we introduce and study a higher dimensional analogue of the giant component in continuum percolation. Using the language of algebraic topology, we define the notion of giant $k$-dimensional cycles (with $0$-cycles being connected components). Considering a continuum percolation model in the flat $d$-dimensional torus, we show that all the giant $k$-cycles ($1\le k \le d-1$) appear in the regime known as the thermodynamic limit. We also prove that the thresholds for the emergence of the giant $k$-cycles are increasing in $k$ and are tightly related to the critical values in continuum percolation. Finally, we provide bounds for the exponential decay of the probabilities of giant cycles appearing.

Funder

Israel Science Foundation

SSHRC Canada

Alan Turing Institute

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference43 articles.

1. Modeling and replicating statistical topology and evidence for CMB nonhomogeneity;Adler,2017

2. Sharpness of the phase transition for continuum percolation in ${\mathbb{R}}^2$;Ahlberg

3. Sharpness of the phase transition in percolation models;Aizenman,1987

4. On a sharp transition from area law to perimeter law in a system of random surfaces;Aizenman,1983

5. Topologies of random geometric complexes on Riemannian manifolds in the thermodynamic limit;Auffinger,2020

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The three way Dirac operator and dynamical Turing and Dirac induced patterns on nodes and links;Chaos, Solitons & Fractals;2024-01

2. Central Limit Theorem for Euclidean Minimal Spanning Acycles;Journal of Topology and Analysis;2023-11-17

3. Random colorings in manifolds;Israel Journal of Mathematics;2023-09

4. A universal null-distribution for topological data analysis;Scientific Reports;2023-07-28

5. Homological connectivity in random Čech complexes;Probability Theory and Related Fields;2022-07-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3