Author:
Bobrowski Omer,Skraba Primoz
Abstract
AbstractOne of the most elusive challenges within the area of topological data analysis is understanding the distribution of persistence diagrams arising from data. Despite much effort and its many successful applications, this is largely an open problem. We present a surprising discovery: normalized properly, persistence diagrams arising from random point-clouds obey a universal probability law. Our statements are based on extensive experimentation on both simulated and real data, covering point-clouds with vastly different geometry, topology, and probability distributions. Our results also include an explicit well-known distribution as a candidate for the universal law. We demonstrate the power of these new discoveries by proposing a new hypothesis testing framework for computing significance values for individual topological features within persistence diagrams, providing a new quantitative way to assess the significance of structure in data.
Funder
Israel Science Foundation
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献