Semiclassical Resolvent Bounds for Long-Range Lipschitz Potentials

Author:

Galkowski Jeffrey1,Shapiro Jacob2

Affiliation:

1. Department of Mathematics, University College London, London WC1H 0AY, UK

2. Department of Mathematics, University of Dayton, Dayton, OH 45469, USA

Abstract

Abstract We give an elementary proof of weighted resolvent estimates for the semiclassical Schrödinger operator $-h^2 \Delta + V(x) - E$ in dimension $n \neq 2$, where $h, \, E> 0$. The potential is real valued and $V$ and $\partial _r V$ exhibit long-range decay at infinity and may grow like a sufficiently small negative power of $r$ as $r \to 0$. The resolvent norm grows exponentially in $h^{-1}$, but near infinity it grows linearly. When $V$ is compactly supported, we obtain linear growth if the resolvent is multiplied by weights supported outside a ball of radius $CE^{-1/2}$ for some $C> 0$. This $E$-dependence is sharp and answers a question of Datchev and Jin.

Funder

Australian Research Council

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference37 articles.

1. Carleman estimates and distribution of resonances for the transparent obstacle and application to the stabilization;Bellassoued;Asymptot. Anal.,2003

2. Low frequency estimates and local energy decay for asymptotically Euclidean Laplacians;Bouclet;Comm. Partial Differential Equations,2011

3. Strichartz estimates for long range perturbations;Bouclet;Amer. J. Math.,2008

4. Décroissance de l’énergie locale de l’équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel;Burq;Acta Math.,1998

5. Lower bounds for shape resonances widths of long range Schrödinger operators;Burq;Amer. J. Math.,2002

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3