Semiclassical resolvent bounds for short range L ∞ potentials with singularities at the origin

Author:

Shapiro Jacob1

Affiliation:

1. Department of Mathematics, University of Dayton, Dayton, OH 45469-2316, USA

Abstract

We consider, for h , E > 0, resolvent estimates for the semiclassical Schrödinger operator − h 2 Δ + V − E. Near infinity, the potential takes the form V = V L + V S , where V L is a long range potential which is Lipschitz with respect to the radial variable, while V S = O ( | x | − 1 ( log | x | ) − ρ ) for some ρ > 1. Near the origin, | V | may behave like | x | − β , provided 0 ⩽ β < 2 ( 3 − 1 ). We find that, for any ρ ˜ > 1, there are C , h 0 > 0 such that we have a resolvent bound of the form exp ( C h − 2 ( log ( h − 1 ) ) 1 + ρ ˜ ) for all h ∈ ( 0 , h 0 ]. The h-dependence of the bound improves if V S decays at a faster rate toward infinity.

Publisher

IOS Press

Subject

General Mathematics

Reference29 articles.

1. Carleman estimates and distribution of resonances for the transparent obstacle and application to the stabilization;Bellassoued;Asymptot. Anal.,2003

2. Low frequency estimates and local energy decay for asymptotically Euclidean Laplacians;Bouclet;Comm. Partial Differential Equations.,2011

3. Décroissance de l’énergie locale de l’équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel;Burq;Acta Math.,1998

4. Lower bounds for shape resonances widths of long range Schrödinger operators;Burq;Amer. J. Math.,2002

5. Uniform estimates of the resolvent of the Laplace-Beltrami operator on infinite volume Riemannian manifolds. II;Cardoso;Ann. Henri Poincaré,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3