Full Double Hölder Regularity of the Pressure in Bounded Domains

Author:

De Rosa Luigi1,Latocca Mickaël2,Stefani Giorgio3

Affiliation:

1. Department Mathematik und Informatik, Universität Basel , Spiegelgasse 1, 4051 Basel, Switzerland

2. Department of Mathematics, University of Maryland, College Park , MD 20742, USA

3. Scuola Internazionale Superiore di Studi Avanzati (SISSA) , via Bonomea 265, 34136 Trieste (TS), Italy

Abstract

Abstract We consider Hölder continuous weak solutions $u\in C^{\gamma }(\Omega )$, $u\cdot n|_{\partial \Omega }=0$, of the incompressible Euler equations on a bounded and simply connected domain $\Omega \subset{\mathbb{R}}^{d}$. If $\Omega $ is of class $C^{2,1}$ then the corresponding pressure satisfies $p\in C^{2\gamma }_{*}(\Omega )$ in the case $\gamma \in (0,\frac{1}{2}]$, where $C^{2\gamma }_{*}$ is the Hölder–Zygmund space, which coincides with the usual Hölder space for $\gamma <\frac 12$. This result, together with our previous one in [ 11] covering the case $\gamma \in (\frac 12,1)$, yields the full double regularity of the pressure on bounded and sufficiently regular domains. The interior regularity comes from the corresponding $C^{2\gamma }_{*}$ estimate for the pressure on the whole space ${\mathbb{R}}^{d}$, which in particular extends and improves the known double regularity results (in the absence of a boundary) in the borderline case $\gamma =\frac{1}{2}$. The boundary regularity features the use of local normal geodesic coordinates, pseudodifferential calculus and a fine Littlewood–Paley analysis of the modified equation in the new coordinate system. We also discuss the relation between different notions of weak solutions, a step that plays a major role in our approach.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference26 articles.

1. Fourier Analysis and Nonlinear Partial Differential Equations

2. Onsager’s conjecture for the incompressible Euler equations in bounded domains;Bardos;Arch. Rational Mech. Anal.,2018

3. Hölder regularity of the pressure for weak solutions of the 3D Euler equations in bounded domains;Bardos,(2023

4. ${C}^{0,\alpha } $ Boundary regularity for the pressure in weak solutions of the $2d$ Euler equations;Bardos;Phil. Trans. R. Soc. A.,(2022

5. Onsager’s conjecture with physical boundaries and an application to the vanishing viscosity limit;Bardos;Comm. Math. Phys.,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Onsager's ‘ideal turbulence’ theory;Journal of Fluid Mechanics;2024-05-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3