C 0, α boundary regularity for the pressure in weak solutions of the 2 d Euler equations

Author:

Bardos Claude W.1ORCID,Titi Edriss S.234

Affiliation:

1. Laboratoire J.-L. Lions, BP187, 75252 Paris Cedex 05, France

2. Department of Mathematics, Texas A&M University, College Station, TX 77843, USA

3. Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK

4. Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel

Abstract

The purpose of this article is to give a complete proof of a C 0 , α regularity result for the pressure for weak solutions of the two-dimensional ‘incompressible Euler equations’ when the fluid velocity enjoys the same type of regularity in a compact simply connected domain with C 2 boundary. To accomplish our result, we realize that it is compulsory to introduce a new weak formulation for the boundary condition of the pressure, which is consistent with, and equivalent to, that of classical solutions. This article is part of the theme issue ‘Scaling the turbulence edifice (part 1)’.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference16 articles.

1. Lectures on Elliptic and Parabolic Equations in Hölder Spaces

2. Ladyzhenskaya O, Uraltseva N. 1968 Linear and Quasilinear Elliptic Equations. New York: Academic Press.

3. Onsager’s Conjecture for the Incompressible Euler Equations in Bounded Domains

4. Energy conservation for the Euler equations on T×R+ for weak solutions defined without reference to the pressure;Robinson JC;Asymptot. Anal.,2018

5. Robinson JC Rodrigo JL Skipper WD. 2018 Energy conservation in the 3D Euler equation on T2×R+. Partial Differential Equations in Fluid Mechanics 224–251 London Math. Soc. Lecture Note Ser. 452 Cambridge: Cambridge University Press.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Γ-convergence of the Ginzburg-Landau functional with tangential boundary conditions;Journal of Functional Analysis;2024-12

2. Onsager's ‘ideal turbulence’ theory;Journal of Fluid Mechanics;2024-05-27

3. Full Double Hölder Regularity of the Pressure in Bounded Domains;International Mathematics Research Notices;2023-08-23

4. On Double Hölder regularity of the hydrodynamic pressure in bounded domains;Calculus of Variations and Partial Differential Equations;2023-01-20

5. Onsager’s conjecture for subgrid scale α-models of turbulence;Physica D: Nonlinear Phenomena;2023-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3