The F-Signature Function on the Ample Cone

Author:

Lee Seungsu1,Pande Swaraj2

Affiliation:

1. Department of Mathematics, University of Utah, Salt Lake City , UT 84112, USA

2. Department of Mathematics, University of Michigan , Ann Arbor, MI 48109-1043, USA

Abstract

Abstract For any fixed globally $F$-regular projective variety $X$ over an algebraically closed field of positive characteristic, we study the $F$-signature of section rings of $X$ with respect to the ample Cartier divisors on $X$. In particular, we define an $F$-signature function on the ample cone of $X$ and show that it is locally Lipschitz continuous. We further prove that the $F$-signature function extends to the boundary of the ample cone. We also establish an effective comparison between the $F$-signature function and the volume function on the ample cone. As a consequence, we show that for divisors that are nef but not big, the extension of the $F$-signature is zero.

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference36 articles.

1. The F-signature and strong F-regularity;Aberbach;Math. Res. Lett.,2003

2. F-signature of pairs and the asymptotic behavior of Frobenius splittings;Blickle;Adv. Math.,2012

3. On the volume of a line bundle;Boucksom;Internat. J. Math.,2002

4. Fundamental groups of F-regular singularities via F-signature;Carvajal-Rojas;Ann. Sci. École Norm. Sup. Quatr. Sér.,2018

5. Finite torsors over strongly F-regular singularities;Carvajal-Rojas;Épijournal Géom. Algébrique,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3